Linux premium180.web-hosting.com 4.18.0-553.54.1.lve.el8.x86_64 #1 SMP Wed Jun 4 13:01:13 UTC 2025 x86_64
LiteSpeed
: 162.0.209.168 | : 216.73.216.187
Cant Read [ /etc/named.conf ]
8.3.30
nortrmdp
www.github.com/MadExploits
Terminal
AUTO ROOT
Adminer
Backdoor Destroyer
Linux Exploit
Lock Shell
Lock File
Create User
CREATE RDP
PHP Mailer
BACKCONNECT
UNLOCK SHELL
HASH IDENTIFIER
CPANEL RESET
CREATE WP USER
BLACK DEFEND!
README
+ Create Folder
+ Create File
/
usr /
include /
c++ /
8 /
tr1 /
[ HOME SHELL ]
Name
Size
Permission
Action
array
6.8
KB
-rw-r--r--
bessel_function.tcc
21.95
KB
-rw-r--r--
beta_function.tcc
5.85
KB
-rw-r--r--
ccomplex
1.23
KB
-rw-r--r--
cctype
1.38
KB
-rw-r--r--
cfenv
1.96
KB
-rw-r--r--
cfloat
1.35
KB
-rw-r--r--
cinttypes
2.2
KB
-rw-r--r--
climits
1.42
KB
-rw-r--r--
cmath
42.78
KB
-rw-r--r--
complex
12.09
KB
-rw-r--r--
complex.h
1.23
KB
-rw-r--r--
cstdarg
1.22
KB
-rw-r--r--
cstdbool
1.31
KB
-rw-r--r--
cstdint
2.56
KB
-rw-r--r--
cstdio
1.45
KB
-rw-r--r--
cstdlib
1.75
KB
-rw-r--r--
ctgmath
1.22
KB
-rw-r--r--
ctime
1.21
KB
-rw-r--r--
ctype.h
1.18
KB
-rw-r--r--
cwchar
1.68
KB
-rw-r--r--
cwctype
1.42
KB
-rw-r--r--
ell_integral.tcc
27.07
KB
-rw-r--r--
exp_integral.tcc
15.63
KB
-rw-r--r--
fenv.h
1.18
KB
-rw-r--r--
float.h
1.18
KB
-rw-r--r--
functional
68.89
KB
-rw-r--r--
functional_hash.h
5.9
KB
-rw-r--r--
gamma.tcc
14.34
KB
-rw-r--r--
hashtable.h
40.56
KB
-rw-r--r--
hashtable_policy.h
24.5
KB
-rw-r--r--
hypergeometric.tcc
27.41
KB
-rw-r--r--
inttypes.h
1.24
KB
-rw-r--r--
legendre_function.tcc
10.65
KB
-rw-r--r--
limits.h
1.19
KB
-rw-r--r--
math.h
4.45
KB
-rw-r--r--
memory
1.75
KB
-rw-r--r--
modified_bessel_func.tcc
15.94
KB
-rw-r--r--
poly_hermite.tcc
3.83
KB
-rw-r--r--
poly_laguerre.tcc
11.4
KB
-rw-r--r--
random
1.55
KB
-rw-r--r--
random.h
71.41
KB
-rw-r--r--
random.tcc
52.66
KB
-rw-r--r--
regex
90.7
KB
-rw-r--r--
riemann_zeta.tcc
13.73
KB
-rw-r--r--
shared_ptr.h
31.84
KB
-rw-r--r--
special_function_util.h
4.94
KB
-rw-r--r--
stdarg.h
1.19
KB
-rw-r--r--
stdbool.h
1.19
KB
-rw-r--r--
stdint.h
1.19
KB
-rw-r--r--
stdio.h
1.18
KB
-rw-r--r--
stdlib.h
1.45
KB
-rw-r--r--
tgmath.h
1.23
KB
-rw-r--r--
tuple
11.83
KB
-rw-r--r--
type_traits
18.57
KB
-rw-r--r--
unordered_map
1.54
KB
-rw-r--r--
unordered_map.h
9.98
KB
-rw-r--r--
unordered_set
1.54
KB
-rw-r--r--
unordered_set.h
9.32
KB
-rw-r--r--
utility
3.15
KB
-rw-r--r--
wchar.h
1.22
KB
-rw-r--r--
wctype.h
1.23
KB
-rw-r--r--
Delete
Unzip
Zip
${this.title}
Close
Code Editor : ell_integral.tcc
// Special functions -*- C++ -*- // Copyright (C) 2006-2018 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /** @file tr1/ell_integral.tcc * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{tr1/cmath} */ // // ISO C++ 14882 TR1: 5.2 Special functions // // Written by Edward Smith-Rowland based on: // (1) B. C. Carlson Numer. Math. 33, 1 (1979) // (2) B. C. Carlson, Special Functions of Applied Mathematics (1977) // (3) The Gnu Scientific Library, http://www.gnu.org/software/gsl // (4) Numerical Recipes in C, 2nd ed, by W. H. Press, S. A. Teukolsky, // W. T. Vetterling, B. P. Flannery, Cambridge University Press // (1992), pp. 261-269 #ifndef _GLIBCXX_TR1_ELL_INTEGRAL_TCC #define _GLIBCXX_TR1_ELL_INTEGRAL_TCC 1 namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION #if _GLIBCXX_USE_STD_SPEC_FUNCS #elif defined(_GLIBCXX_TR1_CMATH) namespace tr1 { #else # error do not include this header directly, use <cmath> or <tr1/cmath> #endif // [5.2] Special functions // Implementation-space details. namespace __detail { /** * @brief Return the Carlson elliptic function @f$ R_F(x,y,z) @f$ * of the first kind. * * The Carlson elliptic function of the first kind is defined by: * @f[ * R_F(x,y,z) = \frac{1}{2} \int_0^\infty * \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}} * @f] * * @param __x The first of three symmetric arguments. * @param __y The second of three symmetric arguments. * @param __z The third of three symmetric arguments. * @return The Carlson elliptic function of the first kind. */ template<typename _Tp> _Tp __ellint_rf(_Tp __x, _Tp __y, _Tp __z) { const _Tp __min = std::numeric_limits<_Tp>::min(); const _Tp __max = std::numeric_limits<_Tp>::max(); const _Tp __lolim = _Tp(5) * __min; const _Tp __uplim = __max / _Tp(5); if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0)) std::__throw_domain_error(__N("Argument less than zero " "in __ellint_rf.")); else if (__x + __y < __lolim || __x + __z < __lolim || __y + __z < __lolim) std::__throw_domain_error(__N("Argument too small in __ellint_rf")); else { const _Tp __c0 = _Tp(1) / _Tp(4); const _Tp __c1 = _Tp(1) / _Tp(24); const _Tp __c2 = _Tp(1) / _Tp(10); const _Tp __c3 = _Tp(3) / _Tp(44); const _Tp __c4 = _Tp(1) / _Tp(14); _Tp __xn = __x; _Tp __yn = __y; _Tp __zn = __z; const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6)); _Tp __mu; _Tp __xndev, __yndev, __zndev; const unsigned int __max_iter = 100; for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) { __mu = (__xn + __yn + __zn) / _Tp(3); __xndev = 2 - (__mu + __xn) / __mu; __yndev = 2 - (__mu + __yn) / __mu; __zndev = 2 - (__mu + __zn) / __mu; _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev)); __epsilon = std::max(__epsilon, std::abs(__zndev)); if (__epsilon < __errtol) break; const _Tp __xnroot = std::sqrt(__xn); const _Tp __ynroot = std::sqrt(__yn); const _Tp __znroot = std::sqrt(__zn); const _Tp __lambda = __xnroot * (__ynroot + __znroot) + __ynroot * __znroot; __xn = __c0 * (__xn + __lambda); __yn = __c0 * (__yn + __lambda); __zn = __c0 * (__zn + __lambda); } const _Tp __e2 = __xndev * __yndev - __zndev * __zndev; const _Tp __e3 = __xndev * __yndev * __zndev; const _Tp __s = _Tp(1) + (__c1 * __e2 - __c2 - __c3 * __e3) * __e2 + __c4 * __e3; return __s / std::sqrt(__mu); } } /** * @brief Return the complete elliptic integral of the first kind * @f$ K(k) @f$ by series expansion. * * The complete elliptic integral of the first kind is defined as * @f[ * K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta} * {\sqrt{1 - k^2sin^2\theta}} * @f] * * This routine is not bad as long as |k| is somewhat smaller than 1 * but is not is good as the Carlson elliptic integral formulation. * * @param __k The argument of the complete elliptic function. * @return The complete elliptic function of the first kind. */ template<typename _Tp> _Tp __comp_ellint_1_series(_Tp __k) { const _Tp __kk = __k * __k; _Tp __term = __kk / _Tp(4); _Tp __sum = _Tp(1) + __term; const unsigned int __max_iter = 1000; for (unsigned int __i = 2; __i < __max_iter; ++__i) { __term *= (2 * __i - 1) * __kk / (2 * __i); if (__term < std::numeric_limits<_Tp>::epsilon()) break; __sum += __term; } return __numeric_constants<_Tp>::__pi_2() * __sum; } /** * @brief Return the complete elliptic integral of the first kind * @f$ K(k) @f$ using the Carlson formulation. * * The complete elliptic integral of the first kind is defined as * @f[ * K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta} * {\sqrt{1 - k^2 sin^2\theta}} * @f] * where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the * first kind. * * @param __k The argument of the complete elliptic function. * @return The complete elliptic function of the first kind. */ template<typename _Tp> _Tp __comp_ellint_1(_Tp __k) { if (__isnan(__k)) return std::numeric_limits<_Tp>::quiet_NaN(); else if (std::abs(__k) >= _Tp(1)) return std::numeric_limits<_Tp>::quiet_NaN(); else return __ellint_rf(_Tp(0), _Tp(1) - __k * __k, _Tp(1)); } /** * @brief Return the incomplete elliptic integral of the first kind * @f$ F(k,\phi) @f$ using the Carlson formulation. * * The incomplete elliptic integral of the first kind is defined as * @f[ * F(k,\phi) = \int_0^{\phi}\frac{d\theta} * {\sqrt{1 - k^2 sin^2\theta}} * @f] * * @param __k The argument of the elliptic function. * @param __phi The integral limit argument of the elliptic function. * @return The elliptic function of the first kind. */ template<typename _Tp> _Tp __ellint_1(_Tp __k, _Tp __phi) { if (__isnan(__k) || __isnan(__phi)) return std::numeric_limits<_Tp>::quiet_NaN(); else if (std::abs(__k) > _Tp(1)) std::__throw_domain_error(__N("Bad argument in __ellint_1.")); else { // Reduce phi to -pi/2 < phi < +pi/2. const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi() + _Tp(0.5L)); const _Tp __phi_red = __phi - __n * __numeric_constants<_Tp>::__pi(); const _Tp __s = std::sin(__phi_red); const _Tp __c = std::cos(__phi_red); const _Tp __F = __s * __ellint_rf(__c * __c, _Tp(1) - __k * __k * __s * __s, _Tp(1)); if (__n == 0) return __F; else return __F + _Tp(2) * __n * __comp_ellint_1(__k); } } /** * @brief Return the complete elliptic integral of the second kind * @f$ E(k) @f$ by series expansion. * * The complete elliptic integral of the second kind is defined as * @f[ * E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta} * @f] * * This routine is not bad as long as |k| is somewhat smaller than 1 * but is not is good as the Carlson elliptic integral formulation. * * @param __k The argument of the complete elliptic function. * @return The complete elliptic function of the second kind. */ template<typename _Tp> _Tp __comp_ellint_2_series(_Tp __k) { const _Tp __kk = __k * __k; _Tp __term = __kk; _Tp __sum = __term; const unsigned int __max_iter = 1000; for (unsigned int __i = 2; __i < __max_iter; ++__i) { const _Tp __i2m = 2 * __i - 1; const _Tp __i2 = 2 * __i; __term *= __i2m * __i2m * __kk / (__i2 * __i2); if (__term < std::numeric_limits<_Tp>::epsilon()) break; __sum += __term / __i2m; } return __numeric_constants<_Tp>::__pi_2() * (_Tp(1) - __sum); } /** * @brief Return the Carlson elliptic function of the second kind * @f$ R_D(x,y,z) = R_J(x,y,z,z) @f$ where * @f$ R_J(x,y,z,p) @f$ is the Carlson elliptic function * of the third kind. * * The Carlson elliptic function of the second kind is defined by: * @f[ * R_D(x,y,z) = \frac{3}{2} \int_0^\infty * \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{3/2}} * @f] * * Based on Carlson's algorithms: * - B. C. Carlson Numer. Math. 33, 1 (1979) * - B. C. Carlson, Special Functions of Applied Mathematics (1977) * - Numerical Recipes in C, 2nd ed, pp. 261-269, * by Press, Teukolsky, Vetterling, Flannery (1992) * * @param __x The first of two symmetric arguments. * @param __y The second of two symmetric arguments. * @param __z The third argument. * @return The Carlson elliptic function of the second kind. */ template<typename _Tp> _Tp __ellint_rd(_Tp __x, _Tp __y, _Tp __z) { const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); const _Tp __min = std::numeric_limits<_Tp>::min(); const _Tp __max = std::numeric_limits<_Tp>::max(); const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3)); const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3)); if (__x < _Tp(0) || __y < _Tp(0)) std::__throw_domain_error(__N("Argument less than zero " "in __ellint_rd.")); else if (__x + __y < __lolim || __z < __lolim) std::__throw_domain_error(__N("Argument too small " "in __ellint_rd.")); else { const _Tp __c0 = _Tp(1) / _Tp(4); const _Tp __c1 = _Tp(3) / _Tp(14); const _Tp __c2 = _Tp(1) / _Tp(6); const _Tp __c3 = _Tp(9) / _Tp(22); const _Tp __c4 = _Tp(3) / _Tp(26); _Tp __xn = __x; _Tp __yn = __y; _Tp __zn = __z; _Tp __sigma = _Tp(0); _Tp __power4 = _Tp(1); _Tp __mu; _Tp __xndev, __yndev, __zndev; const unsigned int __max_iter = 100; for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) { __mu = (__xn + __yn + _Tp(3) * __zn) / _Tp(5); __xndev = (__mu - __xn) / __mu; __yndev = (__mu - __yn) / __mu; __zndev = (__mu - __zn) / __mu; _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev)); __epsilon = std::max(__epsilon, std::abs(__zndev)); if (__epsilon < __errtol) break; _Tp __xnroot = std::sqrt(__xn); _Tp __ynroot = std::sqrt(__yn); _Tp __znroot = std::sqrt(__zn); _Tp __lambda = __xnroot * (__ynroot + __znroot) + __ynroot * __znroot; __sigma += __power4 / (__znroot * (__zn + __lambda)); __power4 *= __c0; __xn = __c0 * (__xn + __lambda); __yn = __c0 * (__yn + __lambda); __zn = __c0 * (__zn + __lambda); } // Note: __ea is an SPU badname. _Tp __eaa = __xndev * __yndev; _Tp __eb = __zndev * __zndev; _Tp __ec = __eaa - __eb; _Tp __ed = __eaa - _Tp(6) * __eb; _Tp __ef = __ed + __ec + __ec; _Tp __s1 = __ed * (-__c1 + __c3 * __ed / _Tp(3) - _Tp(3) * __c4 * __zndev * __ef / _Tp(2)); _Tp __s2 = __zndev * (__c2 * __ef + __zndev * (-__c3 * __ec - __zndev * __c4 - __eaa)); return _Tp(3) * __sigma + __power4 * (_Tp(1) + __s1 + __s2) / (__mu * std::sqrt(__mu)); } } /** * @brief Return the complete elliptic integral of the second kind * @f$ E(k) @f$ using the Carlson formulation. * * The complete elliptic integral of the second kind is defined as * @f[ * E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta} * @f] * * @param __k The argument of the complete elliptic function. * @return The complete elliptic function of the second kind. */ template<typename _Tp> _Tp __comp_ellint_2(_Tp __k) { if (__isnan(__k)) return std::numeric_limits<_Tp>::quiet_NaN(); else if (std::abs(__k) == 1) return _Tp(1); else if (std::abs(__k) > _Tp(1)) std::__throw_domain_error(__N("Bad argument in __comp_ellint_2.")); else { const _Tp __kk = __k * __k; return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1)) - __kk * __ellint_rd(_Tp(0), _Tp(1) - __kk, _Tp(1)) / _Tp(3); } } /** * @brief Return the incomplete elliptic integral of the second kind * @f$ E(k,\phi) @f$ using the Carlson formulation. * * The incomplete elliptic integral of the second kind is defined as * @f[ * E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta} * @f] * * @param __k The argument of the elliptic function. * @param __phi The integral limit argument of the elliptic function. * @return The elliptic function of the second kind. */ template<typename _Tp> _Tp __ellint_2(_Tp __k, _Tp __phi) { if (__isnan(__k) || __isnan(__phi)) return std::numeric_limits<_Tp>::quiet_NaN(); else if (std::abs(__k) > _Tp(1)) std::__throw_domain_error(__N("Bad argument in __ellint_2.")); else { // Reduce phi to -pi/2 < phi < +pi/2. const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi() + _Tp(0.5L)); const _Tp __phi_red = __phi - __n * __numeric_constants<_Tp>::__pi(); const _Tp __kk = __k * __k; const _Tp __s = std::sin(__phi_red); const _Tp __ss = __s * __s; const _Tp __sss = __ss * __s; const _Tp __c = std::cos(__phi_red); const _Tp __cc = __c * __c; const _Tp __E = __s * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1)) - __kk * __sss * __ellint_rd(__cc, _Tp(1) - __kk * __ss, _Tp(1)) / _Tp(3); if (__n == 0) return __E; else return __E + _Tp(2) * __n * __comp_ellint_2(__k); } } /** * @brief Return the Carlson elliptic function * @f$ R_C(x,y) = R_F(x,y,y) @f$ where @f$ R_F(x,y,z) @f$ * is the Carlson elliptic function of the first kind. * * The Carlson elliptic function is defined by: * @f[ * R_C(x,y) = \frac{1}{2} \int_0^\infty * \frac{dt}{(t + x)^{1/2}(t + y)} * @f] * * Based on Carlson's algorithms: * - B. C. Carlson Numer. Math. 33, 1 (1979) * - B. C. Carlson, Special Functions of Applied Mathematics (1977) * - Numerical Recipes in C, 2nd ed, pp. 261-269, * by Press, Teukolsky, Vetterling, Flannery (1992) * * @param __x The first argument. * @param __y The second argument. * @return The Carlson elliptic function. */ template<typename _Tp> _Tp __ellint_rc(_Tp __x, _Tp __y) { const _Tp __min = std::numeric_limits<_Tp>::min(); const _Tp __max = std::numeric_limits<_Tp>::max(); const _Tp __lolim = _Tp(5) * __min; const _Tp __uplim = __max / _Tp(5); if (__x < _Tp(0) || __y < _Tp(0) || __x + __y < __lolim) std::__throw_domain_error(__N("Argument less than zero " "in __ellint_rc.")); else { const _Tp __c0 = _Tp(1) / _Tp(4); const _Tp __c1 = _Tp(1) / _Tp(7); const _Tp __c2 = _Tp(9) / _Tp(22); const _Tp __c3 = _Tp(3) / _Tp(10); const _Tp __c4 = _Tp(3) / _Tp(8); _Tp __xn = __x; _Tp __yn = __y; const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6)); _Tp __mu; _Tp __sn; const unsigned int __max_iter = 100; for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) { __mu = (__xn + _Tp(2) * __yn) / _Tp(3); __sn = (__yn + __mu) / __mu - _Tp(2); if (std::abs(__sn) < __errtol) break; const _Tp __lambda = _Tp(2) * std::sqrt(__xn) * std::sqrt(__yn) + __yn; __xn = __c0 * (__xn + __lambda); __yn = __c0 * (__yn + __lambda); } _Tp __s = __sn * __sn * (__c3 + __sn*(__c1 + __sn * (__c4 + __sn * __c2))); return (_Tp(1) + __s) / std::sqrt(__mu); } } /** * @brief Return the Carlson elliptic function @f$ R_J(x,y,z,p) @f$ * of the third kind. * * The Carlson elliptic function of the third kind is defined by: * @f[ * R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty * \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}(t + p)} * @f] * * Based on Carlson's algorithms: * - B. C. Carlson Numer. Math. 33, 1 (1979) * - B. C. Carlson, Special Functions of Applied Mathematics (1977) * - Numerical Recipes in C, 2nd ed, pp. 261-269, * by Press, Teukolsky, Vetterling, Flannery (1992) * * @param __x The first of three symmetric arguments. * @param __y The second of three symmetric arguments. * @param __z The third of three symmetric arguments. * @param __p The fourth argument. * @return The Carlson elliptic function of the fourth kind. */ template<typename _Tp> _Tp __ellint_rj(_Tp __x, _Tp __y, _Tp __z, _Tp __p) { const _Tp __min = std::numeric_limits<_Tp>::min(); const _Tp __max = std::numeric_limits<_Tp>::max(); const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3)); const _Tp __uplim = _Tp(0.3L) * std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3)); if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0)) std::__throw_domain_error(__N("Argument less than zero " "in __ellint_rj.")); else if (__x + __y < __lolim || __x + __z < __lolim || __y + __z < __lolim || __p < __lolim) std::__throw_domain_error(__N("Argument too small " "in __ellint_rj")); else { const _Tp __c0 = _Tp(1) / _Tp(4); const _Tp __c1 = _Tp(3) / _Tp(14); const _Tp __c2 = _Tp(1) / _Tp(3); const _Tp __c3 = _Tp(3) / _Tp(22); const _Tp __c4 = _Tp(3) / _Tp(26); _Tp __xn = __x; _Tp __yn = __y; _Tp __zn = __z; _Tp __pn = __p; _Tp __sigma = _Tp(0); _Tp __power4 = _Tp(1); const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6)); _Tp __lambda, __mu; _Tp __xndev, __yndev, __zndev, __pndev; const unsigned int __max_iter = 100; for (unsigned int __iter = 0; __iter < __max_iter; ++__iter) { __mu = (__xn + __yn + __zn + _Tp(2) * __pn) / _Tp(5); __xndev = (__mu - __xn) / __mu; __yndev = (__mu - __yn) / __mu; __zndev = (__mu - __zn) / __mu; __pndev = (__mu - __pn) / __mu; _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev)); __epsilon = std::max(__epsilon, std::abs(__zndev)); __epsilon = std::max(__epsilon, std::abs(__pndev)); if (__epsilon < __errtol) break; const _Tp __xnroot = std::sqrt(__xn); const _Tp __ynroot = std::sqrt(__yn); const _Tp __znroot = std::sqrt(__zn); const _Tp __lambda = __xnroot * (__ynroot + __znroot) + __ynroot * __znroot; const _Tp __alpha1 = __pn * (__xnroot + __ynroot + __znroot) + __xnroot * __ynroot * __znroot; const _Tp __alpha2 = __alpha1 * __alpha1; const _Tp __beta = __pn * (__pn + __lambda) * (__pn + __lambda); __sigma += __power4 * __ellint_rc(__alpha2, __beta); __power4 *= __c0; __xn = __c0 * (__xn + __lambda); __yn = __c0 * (__yn + __lambda); __zn = __c0 * (__zn + __lambda); __pn = __c0 * (__pn + __lambda); } // Note: __ea is an SPU badname. _Tp __eaa = __xndev * (__yndev + __zndev) + __yndev * __zndev; _Tp __eb = __xndev * __yndev * __zndev; _Tp __ec = __pndev * __pndev; _Tp __e2 = __eaa - _Tp(3) * __ec; _Tp __e3 = __eb + _Tp(2) * __pndev * (__eaa - __ec); _Tp __s1 = _Tp(1) + __e2 * (-__c1 + _Tp(3) * __c3 * __e2 / _Tp(4) - _Tp(3) * __c4 * __e3 / _Tp(2)); _Tp __s2 = __eb * (__c2 / _Tp(2) + __pndev * (-__c3 - __c3 + __pndev * __c4)); _Tp __s3 = __pndev * __eaa * (__c2 - __pndev * __c3) - __c2 * __pndev * __ec; return _Tp(3) * __sigma + __power4 * (__s1 + __s2 + __s3) / (__mu * std::sqrt(__mu)); } } /** * @brief Return the complete elliptic integral of the third kind * @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ using the * Carlson formulation. * * The complete elliptic integral of the third kind is defined as * @f[ * \Pi(k,\nu) = \int_0^{\pi/2} * \frac{d\theta} * {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}} * @f] * * @param __k The argument of the elliptic function. * @param __nu The second argument of the elliptic function. * @return The complete elliptic function of the third kind. */ template<typename _Tp> _Tp __comp_ellint_3(_Tp __k, _Tp __nu) { if (__isnan(__k) || __isnan(__nu)) return std::numeric_limits<_Tp>::quiet_NaN(); else if (__nu == _Tp(1)) return std::numeric_limits<_Tp>::infinity(); else if (std::abs(__k) > _Tp(1)) std::__throw_domain_error(__N("Bad argument in __comp_ellint_3.")); else { const _Tp __kk = __k * __k; return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1)) + __nu * __ellint_rj(_Tp(0), _Tp(1) - __kk, _Tp(1), _Tp(1) - __nu) / _Tp(3); } } /** * @brief Return the incomplete elliptic integral of the third kind * @f$ \Pi(k,\nu,\phi) @f$ using the Carlson formulation. * * The incomplete elliptic integral of the third kind is defined as * @f[ * \Pi(k,\nu,\phi) = \int_0^{\phi} * \frac{d\theta} * {(1 - \nu \sin^2\theta) * \sqrt{1 - k^2 \sin^2\theta}} * @f] * * @param __k The argument of the elliptic function. * @param __nu The second argument of the elliptic function. * @param __phi The integral limit argument of the elliptic function. * @return The elliptic function of the third kind. */ template<typename _Tp> _Tp __ellint_3(_Tp __k, _Tp __nu, _Tp __phi) { if (__isnan(__k) || __isnan(__nu) || __isnan(__phi)) return std::numeric_limits<_Tp>::quiet_NaN(); else if (std::abs(__k) > _Tp(1)) std::__throw_domain_error(__N("Bad argument in __ellint_3.")); else { // Reduce phi to -pi/2 < phi < +pi/2. const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi() + _Tp(0.5L)); const _Tp __phi_red = __phi - __n * __numeric_constants<_Tp>::__pi(); const _Tp __kk = __k * __k; const _Tp __s = std::sin(__phi_red); const _Tp __ss = __s * __s; const _Tp __sss = __ss * __s; const _Tp __c = std::cos(__phi_red); const _Tp __cc = __c * __c; const _Tp __Pi = __s * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1)) + __nu * __sss * __ellint_rj(__cc, _Tp(1) - __kk * __ss, _Tp(1), _Tp(1) - __nu * __ss) / _Tp(3); if (__n == 0) return __Pi; else return __Pi + _Tp(2) * __n * __comp_ellint_3(__k, __nu); } } } // namespace __detail #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) } // namespace tr1 #endif _GLIBCXX_END_NAMESPACE_VERSION } #endif // _GLIBCXX_TR1_ELL_INTEGRAL_TCC
Close